skip to main content


Search for: All records

Creators/Authors contains: "Bosnjak, Nikola"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Triply periodic minimal surface lattices have mechanical properties that derive from the unit cell geometry and the base material. Through computation software like nTopology and Abaqus, these geometries are used to tune nonlinear stress–strain curves not readily achievable with solid materials alone and to change the compliance by two orders of magnitude compared to the constituent material. In this study, four elastomeric TPMS gyroids undergo large deformation compression and tension testing to investigate the impact of the structure's geometry on the mechanical properties. Among all the samples, the modulus at strainεvaries by over one order of magnitude (7.7–293.4 kPa from FEA under compression). These lattices are promising candidates for designing multifunctional systems that can perform multiple tasks simultaneously by leveraging the geometry's large surface area to volume ratio. For example, the architectural functionality of the lattice to bear loads and store mechanical energy along with the larger surface area for energy storage is combined. A compliant double‐gyroid capacitor that can simultaneously achieve three functions is demonstrated: load bearing, energy storage, and sensing.

     
    more » « less
  2. Abstract

    3D cell cultures are rapidly emerging as a promising tool to model various human physiologies and pathologies by closely recapitulating key characteristics and functions of in vivo microenvironment. While high‐throughput 3D culture is readily available using multi‐well plates, assessing the internal microstructure of 3D cell cultures still remains extremely slow because of the manual, laborious, and time‐consuming histological procedures. Here, a 4D‐printed transformable tube array (TTA) using a shape‐memory polymer that enables massively parallel histological analysis of 3D cultures is presented. The interconnected TTA can be programmed to be expanded by 3.6 times of its printed dimension to match the size of a multi‐well plate, with the ability to restore its original dimension for transferring all cultures to a histology cassette in order. Being compatible with microtome sectioning, the TTA allows for parallel histology processing for the entire samples cultured in a multi‐well plate. The test result with human neural progenitor cell spheroids suggests a remarkable reduction in histology processing time by an order of magnitude. High‐throughput analysis of 3D cultures enabled by this TTA has great potential to further accelerate innovations in various 3D culture applications such as high‐throughput/content screening, drug discovery, disease modeling, and personalized medicine.

     
    more » « less